Águas quentes e frias em PP

Tubos e acessórios FERSIL PP-R100

S3,2 (PN20) e S2,5 (PN25) - (DIN 8077)

Com a evolução dos graus de PP-R por parte da indústria petroquímica, foram introduzidos no mercado, compostos de PP-R com classificações de MRS (12,5MPa) superiores ao tradicional (MRS 8,0MPa). Com estes novos materiais a FERSIL apresenta duas gamas de tubos de PP-R que passam a ser designados:

- TB PP-R100 S3,2 EN ISO 15874 PN20
- TB PP-R100 S2,5 EN ISO 15874 PN25

O sistema de tubagem FERSIL PP-R100 inclui tubos, acessórios e válvulas e é aplicável para instalações de água quente e fria no interior da estrutura dos edifícios, para a condução de água para consumo humano (sistemas domésticos) e para instalações de aquecimento, às pressões e temperaturas de projecto adequadas à classe de aplicação.

Classificação das classes de pressão de acordo com as normas EN ISO 15874 e DIN 8077							
			EN ISO 15874 con segurança		DIN 8077 com coeficiente de segurança C = 1,5		
Classe de	Campo de	Temperatura de projecto e	S 3,2 (SDR 7,4)	S 2,5 (SDR 6)	S 3,2 (SDR 7,4) PN20	S 2,5 (SDR 6) PN25	
aplicação durabilidade	Pressão de projecto P _D	Pressão de projecto P _D	Pressão de serviço admissível P	Pressão de serviço admissível P			
-	Abastecimento de água fria (20°C)	Temp. serviço 20°C (50 anos)	20 bar	25 bar	20,4 bar	25,7 bar	
1	Abastecimento de água quente (60°C)	Temp. serviço 60°C (49 anos) Temp. máxima 80°C (1 ano) Temp mau funcionamento 95°C (100 h)	8 bar	10 bar	10,2 bar	12,9 bar	
2	Abastecimento de água quente (70°C)	Temp. serviço 70°C (49 anos) Temp. máxima 80°C (1 ano) Temp. mau funcionamento 95°C (100 h)	6 bar	8 bar	6,7 bar	8,5 bar	
4	Aquecimento por piso radiante e radiadores de baixa temperatura	Temp. serviço 60°C (25 anos) + 40°C (20 anos) + 20°C (2,5 anos) Temp. máxima 70°C (2,5 anos) Temp. mau funcionamento 100°C (100 h)	10 bar	10 bar	10,5 bar	13,3 bar	
5	Radiadores de alta temperatura	Temp. serviço 80°C (10 anos) + 60°C(25 anos) + 20°C (14 anos) Temp. máxima 90°C (1 ano) Temp. mau funcionamento 100°C (100 h)	6 bar	6 bar	6,4 bar	8,1 bar	

Esta Ficha Técnica é aplicável aos tubos e acessórios FERSIL PP-R100, suas uniões e às uniões com componentes de PP-R e de outros materiais que sejam utilizados nas seguintes condições:

- A uma pressão máxima de projecto, PD, até 8 bar (0,8MPa) para a série S3,2 ou 10 bar (1,0 MPa) para a série S2,5;
- A uma pressão de serviço admissível, P, até 10 bar (1,0MPa) para a série S3,2 ou 12,5 bar (1,25 MPa) para a série S2,5;
- A uma temperatura de serviço de 60 °C, como temperatura de referência

Nota: Quando o sistema de tubos em PP-R, vai funcionar a uma temperatura contínua, constante superior a 60 °C e até 80 °C, pode ser aplicado um coeficiente de redução de pressão conforme os quadros anteriores.

Generalidades

Os tubos e acessórios FERSIL PP-R100 seguem as especificações de produto definidas pelas normas EN ISO 15874-1, -2, -3 e -5 assim como os requisitos das normas DIN 8077 e DIN 8078.

Com os novos graus de PP-R foi possível manter as mesmas pressões de serviço para que possam ser usados nas instalações domiciliárias e ao mesmo tempo reduzir a espessura de parede se usarmos a série S3,2 em vez da tradicional série S2,5. Com maior diâmetro interno e aumento de capacidade hidráulica, permite baixar o consumo energético na alimentação da conduta.

Têm excelentes propriedades físicas que lhes confere uma boa flexibilidade no manuseamento, instalação e uso em redes de águas quentes sob pressão. Têm um bom comportamento, quando expostos à maioria dos produtos químicos usados em estações de captação e desinfeção de água. A resistência e o comportamento dependem sempre das condições de serviço da conduta (teor de cloro, temperatura, pressão, velocidade e cargas sobre a instalação).

O sistema de tubos FERSIL PP-R100 só utiliza uniões por fusão térmica (SW) e devem ser executadas de acordo com as indicações da nossa documentação técnica. Como complemento de gama a FERSIL comercializa acessórios de outras marcas, garantindo a sua compatibilidade com os tubos FERSIL PP-R100, com mesma qualidade e durabilidade.

Material

A matéria-prima usada no fabrico dos tubos e acessórios é Polipropileno copolimero aleatório Tipo 3 (PP-R) com MRS de 11,2MPa ou de 12,5MPa, à qual são adicionados os aditivos necessários para facilitar a produção.

Características do material dos tubos e acessórios FERSIL PP-R100							
Característica	Valor	Método de ensaio					
Massa volúmica, ρ (23 °C)	≈ 900 kg/m³	EN ISO 1183					
Coeficiente de transmissão térmica (medido no tubo)	0,24 W/mK	ISO 8302					
Coeficiente de dilatação térmica linear	1,5*10 ⁻⁴ K ⁻¹	ASTM D696					
Índice de fluidez em massa (MFR) (230°C, 2,16kg, 10min)	≤ 0,5 g/10min	EN ISO 1133-1					
Resistência à pressão hidrostática – curta duração (tubo ou acessório ligado ao tubo, água em água, 20°C, σ 16 MPa)	≥ 1 h, sem falha	EN ISO 1167-1 EN ISO 1167-2					
Resistência à pressão hidrostática – longa duração (tubo ou acessório ligado ao tubo, água em água, 95 °C, σ 3,5 MPa)	≥ 1000 h, sem falha	EN ISO 1167-1 EN ISO 1167-2					
Estabilidade térmica (pressão hidrostática) – longa duração (tubo ou acessório ligado ao tubo, água em ar, 110 °C, σ 1,9 MPa)	≥ 8760 h, sem falha	EN ISO 1167-1					

O material dos insertos metálicos dos acessórios de PP-R com rosca deve atender aos requisitos da EN 1254-3 (cobre e ligas de cobre - acessórios de canalizações de águas quente e frias para uso com tubos de plástico). A FERSIL usa apenas insertos metálicos feitos de liga de cobre tipo CW617N (CuZn40Pb2) e o material é resistente à corrosão sob tensão e à deszincificação.

Características gerais

Aspecto visual

A superfície interna e externa dos tubos e dos acessórios são lisas, limpas e isentas de ranhuras, cavidades, impurezas visíveis ou outros defeitos superficiais, que possam afectar o desempenho dos tubos e dos acessórios. As extremidades dos tubos são com corte limpo (isento de rebarbas) e perpendicular ao eixo.

Para os insertos metálicos com rosca dos acessórios PP-R, as superfícies interna e externa devem estar limpas, livres de resíduos da produção (ex. isentas de areia fundida, gordura ou agente desmoldante) e não devem ter arestas vivas ou fissuras.

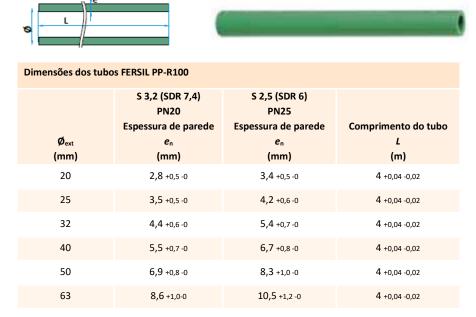
Cor

A parede dos tubos e dos acessórios é de cor verde (aproximadamente RAL 6024) e são permitidas leves variações no aspecto da cor. A cor azul ou outras cores podem ser usadas, desde que acordadas com o cliente e sujeitas a quantidades mínimas de produção.

Marcação

Os elementos de marcação devem ser impressos ou gravados directamente na superfície externa dos tubos e dos acessórios ou numa etiqueta. Após armazenamento, exposição à intempérie, manuseamento e instalação, eles devem ser legíveis.

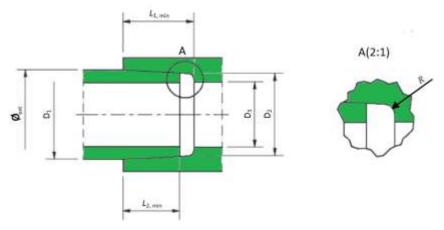
Os tubos devem ser marcados em intervalos não superiores a 1 me com pelo menos uma marcação completa por tubo. A marcação mínima exigida deve ser:


- AENOR N 001/000533 FERSIL PP-R EN ISO 15874 A dnxen S 3,2
 20°C/20 bar Classe 1/8 bar Classe 2/6 bar Classe 4/10 bar Classe 5/6 bar Data + Hora + Lote (OP)
- AENOR N 001/000533 FERSIL PP-R EN ISO 15874 A dnxen S 2,5
 20°C/25 bar Classe 1/10 bar Classe 2/8 bar Classe 4/10 bar Classe 5/6 bar Data + Hora + Lote (OP)

A marcação nos acessórios é garantida no próprio molde pelo alto e baixo relevos, complementada por uma etiqueta na embalagem. A marcação mínima exigida deve ser:

FERSIL – PP-R – EN ISO 15874 –DN – número da cavidade – Relógio Datador (se possível)
 Data + Lote (OP) (na etiqueta ou na embalagem)

Características geométricas


As dimensões dos tubos (diâmetro exterior, \emptyset_{ext} , espessura e_n e comprimento, L) são determinadas com a norma EN ISO 3126.

Os acessórios têm diâmetros nominais compatíveis com os tubos das séries S2,5 e S3,2, quando aplicável os ângulos dos acessórios são de 45 ° ou 90 °.

As roscas dos insertos metálicos utilizados nos acessórios de transição, como Tês, Joelhos, Adaptadores e Uniões, estão em conformidade com a norma EN 10226 ou a ISO 7, e devem ser medidas de acordo com a ISO 2768-1 e/ou parte 2.

As dimensões das embocaduras de fusão dos acessórios FERSIL PP-R100 (diâmetros internos, D1, D2 e D3, ovalização, comprimento de embocadura e de inserção, L1 e L2) são determinadas com a EN ISO 3126



Dimensões das embocaduras de fusão dos acessórios FERSIL PP-R100								
	Diâmetro interno da embocadura Ovalização		Ovalização	Cota de Passagem	Comprimento da embocadura	Comprimento de montagem		
Ø _{ext} (mm)	<i>D</i> ₁ (mm)	<i>D</i> ₂ (mm)	máxima (mm)	D _{3, min} (mm)	<i>L</i> _{1, min} (mm)	L _{2, min} (mm)		
20	19,2 +0,3 -0	19,0 +0,3 -0	0,4	15,2	14,5	11,0		
25	24,2 +0,3 -0	23,9 +0,4 -0	0,4	19,4	16,0	12,5		
32	31,1 +0,4 -0	30,9 +0,4 -0	0,5	25,0	18,0	14,5		
40	39,0 +0,4 -0	38,8 +0,4 -0	0,5	31,4	20,5	17,0		
50	48,9 +0,5 -0	48,7 +0,5 -0	0,6	39,4	23,5	20,0		
63	61,9 +0,6 -0	61,6 +0,5 -0	0,6	49,8	27,5	24,0		

Gama de acessórios com sistema de união com embocadura de fusão (SW)

Joelhos (curvas) PP-R

Os joelhos estão sempre associados ao diâmetro nominal e ao ângulo nominal α (mudança de direção do fluido).

Tês (simples, de redução e cruzes) PP-R

Os Tês estão sempre associados ao diâmetro nominal e ao ângulo nominal α de 90 °.

Uniões, Pontes de cruzamento e Reduções PP-R

As uniões, uniões de cruzamento e as reduções estão sempre associadas aos diâmetros nominais do tubo a unir.

Joelhos roscados PP-R

Os joelhos roscados de transição estão sempre associados ao diâmetro nominal série milimétrica do tubo para fusão, ao diâmetro nominal em polegadas para roscar (série inglesa BSP) e ao ângulo nominal α de 90 °.

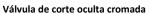
Tês roscados PP-R

Os tês estão sempre e associados ao diâmetro nominal série milimétrica do tubo para fusão, ao diâmetro nominal em polegadas para roscar (série inglesa BSP) e ao ângulo nominal α de 90 °.

Uniões roscadas PP-R

As uniões roscadas de transição estão sempre associadas ao diâmetro nominal série milimétrica do tubo para fusão e ao diâmetro nominal em polegadas para roscar (série inglesa BSP).

Tampões e abraçadeiras PP-R


Os tampões estão sempre e associados ao diâmetro nominal do tubo para fusão ou ao diâmetro nominal em polegadas das roscas (série inglesa BSP). As braçadeiras guia estão sempre e associadas ao diâmetro nominal do tubo.

Válvulas PP-R

As válvulas estão sempre associadas ao diâmetro nominal do tubo para fusão e os castelos ao diâmetro nominal em polegadas.

Válvula de corte com punho

válvula de corte com volante

Características físicas e mecânicas

Os tubos FERSIL PP-R100 têm excelente resistência hidrostática a curta e longa duração, assim como uma boa resistência ao impacto, suficiente para prevenir qualquer quebra durante o manuseamento e instalação acima dos 0 °C.

Características mecânicas dos tubos FERSIL PP-R100		
Característica	Valor	Método de ensaio
Resistência à pressão interna (água em água, 20°C, σ 16,0MPa)	≥ 1 h sem falha	EN ISO 1167-1, -2
Resistência à pressão interna (água em água, 95°C, σ 4,3MPa)	≥ 22 h sem falha	EN ISO 1167-1, -2
Resistência à pressão interna (água em água, 95°C, σ 3,8MPa)	≥ 165 h sem falha	EN ISO 1167-1, -2
Resistência à pressão interna (água em água, 95°C, σ 3,5MPa)	≥ 1000 h sem falha	EN ISO 1167-1, -2
Resistência ao impacto (método Charpy) (0 °C, 10 provetes)	< 10 %	ISO 9854-1, -2

Os acessórios FERSIL PP-R100 possuem excelente resistência hidrostática em relação à classe de aplicação e pressão de projeto.

Características mecânicas dos acessórios PP-R100 para montagem com tubos FERSIL PP-R100 da série S2,5							
Característica	Valor	Método de ensaio					
Resistência à pressão interna (Classe de aplicação 1) (água em água, 20 °C, $\sigma_{\rm F}$ 16 MPa, $\sigma_{\rm DF}$ 3,02 MPa, $p_{\rm D}$ 10 bar, $p_{\rm F}$ 53,1 bar) (água em água, 95°C, , $\sigma_{\rm F}$ 3,5 MPa, $\sigma_{\rm DF}$ 3,02 MPa, $p_{\rm D}$ 10 bar, $p_{\rm F}$ 11,6 bar)	≥ 1 h sem falha ou perdas de água ≥ 1000 h sem falha ou perdas de água	EN ISO 1167-1, -2					
Resistência à pressão interna (Classe de aplicação 2) (água em água, 20° C, σ_{F} 16 MPa, σ_{DF} 2,12 MPa, p_{D} 8 bar, p_{F} 60,5 bar) (água em água, 95° C, σ_{F} 3,5 MPa, σ_{DF} 2,12 MPa, p_{D} 8 bar, p_{F} 13,2 bar)	≥ 1 h sem falha ou perdas de água ≥ 1000 h sem falha ou perdas de água	EN ISO 1167-1, -2					
Resistência à pressão interna (Classe de aplicação 4) (água em água, 20° C, $\sigma_{\rm F}$ 16 MPa, $\sigma_{\rm DF}$ 3,29 MPa, $p_{\rm D}$ 10 bar, $p_{\rm F}$ 48,7 bar) (água em água, 80° C, $\sigma_{\rm F}$ 4,6 MPa, $\sigma_{\rm DF}$ 3,29 MPa, $p_{\rm D}$ 10 bar, $p_{\rm F}$ 13,9 bar)	≥ 1 h sem falha ou perdas de água ≥ 1000 h sem falha ou perdas de água	EN ISO 1167-1, -2					
Resistência à pressão interna (Classe de aplicação 5) (água em água, 20° C, σ_{F} 16 MPa, σ_{DF} 1,89 MPa, p_{D} 6 bar, p_{F} 50,8 bar) (água em água, 95° C, σ_{F} 3,5 MPa, σ_{DF} 1,89 MPa, p_{D} 6 bar, p_{F} 11,1 bar)	≥ 1 h sem falha ou perdas de água ≥ 1000 h sem falha ou perdas de água	EN ISO 1167-1, -2					

Nota: Para efeito de ensaio, os acessórios podem ser montados em pontas de tubo adequadas à classe de aplicação.

Os tubos e acessórios FERSIL PP-R100 têm excelentes propriedades físicas que lhes confere uma boa flexibilidade no manuseamento, instalação e uso em redes de águas quentes e frias.

Características físicas dos tubos e acessórios PP-R100		
Característica	Valor	Método de ensaio
Deformação longitudinal a quente (135 °C, 1h para $d_n \le 40$ mm S2,5 ou $d_n \le 50$ mm S3,2) (135 °C, 2h para $d_n \ge 50$ mm S2,5 ou $d_n \ge 63$ mm S3,2)	≤ 2 %	EN ISO 2505 Método B (ensaio de estufa)
Índice de fluidez a quente em massa (MFR) (230°C, 2,16kg, 10min)	≤ 30 % do MFR do material usado	EN ISO 1133-1

Características químicas

Os tubos e acessórios FERSIL PP-R100 têm um bom comportamento quando expostos à maioria dos produtos químicos usados em estações de captação e desinfeção de água, assim como os existentes na maioria dos tipos de solo onde os tubos são instalados.

A resistência e o comportamento dependem sempre das condições de serviço da conduta (temperatura, pressão e cargas). Para maior detalhe a FERSIL dispõe de um guia de resistências químicas baseado no ISO/TR 10358.

Efeitos do material na qualidade da água

Os tubos e acessórios FERSIL PP-R100, quando em contacto com água destinada ao consumo humano, não devem afectar adversamente a qualidade da água.

Os tubos e acessórios cumprem os requisitos do Despacho 19563/2006 de 25 de Setembro, do Ministério das Obras Públicas Transportes e Comunicações, no que respeita à certificação de produto complementada com a ausência de efeitos nocivos na qualidade da água. Periodicamente são efectuados ensaiados de migração de acordo com a norma EN 12873-2 cujos resultados cumprem com os requisitos estabelecidos na Directiva da água potável (em Portugal o decreto de lei DL 306/2007 modificado pelo DL 152/2017 e em Espanha o real decreto RD 140/2003 modificado pelo RD 314/2016).

Requisitos de desempenho das uniões

As uniões entre tubos e acessórios, devem ser executadas de acordo com as indicações da FERSIL. O sistema de tubos FERSIL PP-R100 só utiliza uniões por fusão térmica (SW) e após a montagem, deverá estar conforme a norma EN ISO 15874-5.

Ensaios às uniões de tubos e acessórios PP-R 100							
Característica	Valor	Método de ensaio					
Resistência à pressão interna (com tubos PP-R S 2,5) (água em água) Classe 1 (95°C, σ _P 3,5MPa, σ _{DP} 3,02MPa, pJ 11,6bar) Classe 2 (95°C, σ _P 3,5MPa, σ _{DP} 2,12MPa, pJ 13,2bar) Classe 4 (80°C, σ _P 4,6MPa, σ _{DP} 3,29MPa, pJ 13,9bar) Classe 5 (95°C, σ _P 3,5MPa, σ _{DP} 1,89MPa, pJ 11,1bar)	≥ 1000 h sem falhas ou perdas de água	EN ISO 1167-1, -3, -3 e -4					
Ensaio de ciclos térmicos (com tubos PP-R S 2,5) Classe 1 (T _{alta} 90°C, T _{Lowest} 20°C, p _D 10bar) Classe 2 (T _{alta} 90°C, T _{Lowest} 20°C, p _D 8bar) Classe 4 (T _{alta} 80°C, T _{Lowest} 20°C, p _D 10bar) Classe 5 (T _{alta} 95°C, T _{Lowest} 20°C, p _D 6bar)	5.000 ciclos (T _{alta} 15min, T _{bjxa} 15min) Sem perdas de água	EN ISO 19893					

Procedimento de montagem

O procedimento de ligação dos tubos FERSIL PP-R100 utiliza apenas métodos de fusão térmica muito simples e rápidos de executar. Com apenas alguns segundos de aquecimento (para se obter a fusão do material), segue-se a montagem por simples encaixe dos tubos nos acessórios e após alguns minutos para arrefecimento, já podemos abrir a válvula que controla a água.

Os tubos FERSIL PP-R100 podem ser ligados com 3 métodos de fusão térmica:

- Embocadura para fusão, onde são usados conjuntos de matrizes pre-montados numa placa com resistências eléctricas que aquecem simultaneamente a embocadura do acessório e a ponta de tubo. No final de um tempo de aquecimento predefinido, é feita a montagem e deixada a arrefecer alguns minutos. Este é o método mais usado no mercado;
- Embocadura electrosoldável, é efectuado o acoplamento entre a(s) ponta(s) de tubo, previamente raspadas no comprimento de montagem e desengorduradas, e a(s) embocadura(s) do acessório electrosoldável. Fixa-se mecanicamente a montagem para evitar deslocamentos durante a fusão térmica.
 - O próprio acessório electrosoldável de PP-R, tem incorporada uma resistência de cobre com dois bornes, nos quais é aplicada uma tensão de 45volt. Resulta daí por efeito de Joule do elemento de aquecimento, a fusão do material nas duas superfícies em contacto (parede externa do tubo(s) e parede interna da embocadura(s) do acessório). Após um tempo de aquecimento predefinido, a fusão do material provoca o disparo dos testemunhos indicando que o processo de fusão foi bem-sucedido e deixa-se arrefecer a montagem fixa por alguns minutos.
 - Normalmente este tipo de ligação é apenas recomendada para DN ≥ 75 mm e quando não é viável a executar o processo de embocadura para fusão ou o de soldadura topo a topo. Os valores de temperatura e os tempos de aquecimento e arrefecimento são definidos nas normas DVS ou nos manuais do equipamento de electrossoldadura;
- Soldadura topo a topo, normalmente só se recomenda para diâmetros ≥ 90 mm. A união é realizada directamente entre dois tubos com o mesmo SDR, fixos a um chassis adequado, retificados e desengordurados.
 - As duas extremidades são comprimidas contra uma placa plana de aquecimento (previamente regulada para a temperatura de fusão recomendada para o tipo de material e SDR dos tubos, até que se atinja o ponto de fusão do material de PP-R com pressão e tempo controlados (forma-se um cordão homogéneo de cada lado da placa). De seguida é retirada a placa de aquecimento e os terminais macho, são comprimidos um contra o outro, com recurso a um hidráulico, com uma pressão e tempo de arrefecimento controlados.
 - Os valores da temperatura e da pressão de compressão, assim como os tempos de aquecimento e arrefecimento são tabelados em normas DVS ou nos manuais de utilização do equipamento de soldadura topo a topo.

O resultado das uniões soldadas por fusão é muito fiável tornando-as mais resistentes que o próprio tubo.

Procedimento de montagem com acessórios de embocadura de fusão

Prepare a máquina de soldar (polifusora) e monte as matrizes adequadas ao tubo a unir, apertando-as antes de ligar a máquina. Ajuste a temperatura de trabalho (geralmente 260 ± 10 ° C, mas pode variar consoante o modelo da máquina) e espere entre 10min a 30min.

Nota: Recomenda-se controlar a temperatura na superfície da placa com um termómetro de contacto ou um dispositivo de medição infravermelho, para avaliar se a temperatura está dentro da faixa pretendida.

Depois de cortar o tubo perpendicularmente ao seu eixo e remover quaisquer rebarbas, marque no extremo do tubo o comprimento de montagem (equivalente à profundidade da embocadura) com um traçador ou um lápis. Marque a posição radial desejada para o acessório fazendo uma marca no tubo e/ou no acessório. Os acessórios possuem marcas que podem servir de orientação em conjunto com as linhas do tubo. Para que a união resulte, o extremo do tubo deve estar limpo, seco e livre de gorduras.

Aquecer o tubo e o acessório nas matrizes pré-aquecidas à temperatura de fusão, por um tempo previamente definido. Quando a temperatura ambiente for inferior a 20 ° C, o tempo de aquecimento deve ser aumentado adequadamente. Se a temperatura ambiente for inferior a 5 ° C, o tempo de aquecimento deve ser aumentado em 50% (ver tabela acima).

Parâmetros para a montagem de tubos FERSIL PP-R100 com acessórios com embocadura de fusão.								
Ø _{ext} (mm)	Profundidade da montagem (mm)	Comprimento das matrizes (mm)	Tempo de aquecime Temp. ambiente ≥ 20 °C (s)	ento a 260 °C ±10 °C Temp. Ambiente ≤ 5 °C (s)	Tempo de aquecimento (para a fusão) (s)	Tempo de arrefecimento (min)		
20	16	15	5	8	4	2		
25	18	17	7	11	4	3		
32	20	19	8	12	6	4		
40	22	22	12	18	6	4		
50	26	24	18	27	6	5		
63	29	28	24	36	8	6		

Retire o tubo e os acessórios das matrizes e em segundos execute a montagem até ao comprimento de montagem previamente marcado no extremo do tubo, com o alinhamento radial pretendido sem rodar mais de 5°, deixando arrefecer a montagem pelo tempo recomendado.

Não empurrar o tubo para além da marca do comprimento de montagem, nem aquém dessa marca, pois isso provocaria no primeiro caso o colapso da passagem (obstrução) e no segundo poderia tornar a montagem frágil e instável.

A união por fusão é considerada eficaz e segura se a ligação entre os dois materiais for homogénea.

Com os tubos da FERSIL apenas devem ser usados os acessórios marca FERSIL ou de marcas recomendadas pela FERSIL.

Recomendações na instalação

Os tubos e acessórios FERSIL PP-R100 podem ser instalados em instalações embutidas, em paredes ocas, apoiada em vigas ou instalações aéreas (à vista). A instalação é muito simples, no entanto à diferenças na forma de as fazer consoante o tipo de instalação.

Os elementos de fixação ideais para os tubos são abraçadeiras de plástico ou metal, dotadas de uma borracha que serve como proteção mecânica do tubo e isolamento acústico.

Na montagem do tubo, deve-se levar em consideração se a fixação é feita com apoios fixos ou deslizantes:

Apoios fixos

Ao distribuir suportes de ancoragem fixos, os tubos são divididos em setores independentes. Isso evita movimentos descontrolados dos tubos e garante uma circulação segura da água pressurizada.

Em princípio, os apoios fixos devem ser colocados de forma a absorver os esforços de expansão dos tubos, bem como as cargas adicionais que possam surgir.

Em geral, as distribuições verticais podem ser montadas de forma rígida. A instalação de condutas ascendentes não requer dilatadores, desde que haja um suporte fixo imediatamente antes do tê de derivação.

• Apoios deslizantes

Os suportes deslizantes devem permitir movimentos axiais do tubo sem danificá-lo.

Ao colocar um suporte deslizante, deve-se observar que o movimento do tubo não é anulado pela colocação próxima de acessórios ou válvulas.

Instalação embutida

Nas instalações embutidas, normalmente não se considera a dilatação dos tubos de PP-R pois o isolamento do tubo com espuma de polietileno permite ao tubo uma margem de dilatação suficiente. Caso esta seja maior que a margem de expansão do isolamento usado, o material deve absorver a tensão que causa o restante da expansão.

As dilatações causadas pela pressão de serviço são contidas pelo material e imperceptíveis, sendo por isso irrelevantes.

Instalação em colunas montantes (tubos ascendentes)

No assentamento de tubos ascendentes (colunas montantes), deve-se ter em consideração que no ramal do tubo em cada piso precisa de ter elasticidade suficiente consoante a expansão do tubo ascendente. Para tal pode ser fixado adequadamente o tubo ascendente na abertura da laje (atravessamento), como um suporte fixo, abraçadeira abaixo do ramal (derivação) e abraçadeira no topo da coluna antes do teto. Outra forma é dar uma folga maior ao tubo passa-muros para o tubo que se pretende derivar (ramal), garantindo assim elasticidade suficiente na derivação.

A elasticidade adequada também pode ser alcançada colocando um braço de flexão (lira) na derivação para o ramal.

Instalação aérea (à vista)

No caso de instalações à vista (por exemplo, em caves ou áreas técnicas), é dada maior importância à aparência visual e deformabilidade na conduta.

Os tubos FERSIL PP-R100 devem ter espaço suficiente para se expandir.

No caso de seções de tubo com mais de 10 m, deve-se fazer uma provisão para compensação das dilatações térmicas radiais e axiais. Uma unidade de tubo livre (lira) é necessária para lidar com a dilatação térmica e as compensações podem ser feitas usando apoios fixos (abraçadeiras de fixação) e apoios deslizantes (abraçadeiras guia, que permitem que o tubo deslize).

Esta compensação não é necessária para as colunas montantes (tubos ascendentes), pois é efectuada nos ramais em cada piso.

Para obter o valor da dilatação térmica que uma conduta pode ter, consultar mais abaixo a tabela de dilatação térmica para os tubos FERSIL PP-R 100, em função do comprimento inicial do tubo e a variação da temperatura.

Dilatação térmica nos tubos FERSIL PP-R100

A dilatação térmica dos tubos depende do salto térmico ao qual o material da conduta está sujeito.

Os tubos do circuito de água fria não sofrem praticamente dilatação, no entanto no circuito de água quente e/ou de aquecimento deve-se ter em consideração o salto térmico e correspondente dilatação dos tubos.

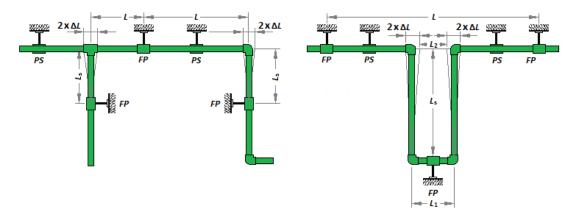
Os tubos FERSIL PP-R100 possuem coeficiente de dilatação térmica muito superior aos tubos multicamada, incluindo o PP-R+FV, e aos tubos metálicos que habitualmente se podem usar em circuitos de água dentro dos edifícios.

A dilatação térmica é calculada da seguinte maneira:

$\triangle L = L * \triangle T * \alpha$

Em que:

- $\triangle L~$ é a variação do comprimento (dilatação) em mm.
- L é o comprimento inicial do tubo em m.
- $\triangle T$ é a variação da temperatura de serviço em graus Kelvin (K) ou em graus Celsius (°C)
- α é o coeficiente de dilatação térmica linear. Para o PP-R100 o valor é 1,5 x 10^{-4} mm/m.K.


Dilatação térmica (variação do comprimento) do tubo FERSIL PP-R100										
	Variação da temperatura de serviço ΔT em graus K									
Comprimento	10	20	30	40	50	60	70	80		
inicial do tubo (m)			ção térmica l	inear ΔL (m	m)					
0.10	0.2	0.3	0.5	0.6	0.8	0.9	1	1		
0.20	0.3	0.6	0.9	1	2	2	2	2		
0.30	0.5	0.9	1	2	2	3	3	4		
0.40	0.6	1	2	2	3	4	4	5		
0.50	0.8	2	2	3	4	5	5	6		
0.60	0.9	2	3	4	5	5	6	7		
0.70	1	2	3	4	5	6	7	8		
0.80	1	2	4	5	6	7	8	10		
0.90	1	3	4	5	7	8	9	11		
1.0	2	3	5	6	8	9	11	12		
2.0	3	6	9	12	15	18	21	24		
3.0	5	9	14	18	23	27	32	36		
4.0	6	12	18	24	30	36	42	48		
5.0	8	15	23	30	38	45	53	60		
6.0	9	18	27	36	45	54	63	72		
7.0	11	21	32	42	53	63	74	84		
8.0	12	24	36	48	60	72	84	96		
9.0	14	27	41	54	68	81	95	108		
10.0	15	30	45	60	75	90	105	120		
11.0	17	33	50	66	83	99	116	132		
12.0	18	36	54	72	90	108	126	144		
13.0	20	39	59	78	98	117	137	156		
14.0	21	42	63	84	105	126	147	168		
15.0	23	45	68	90	113	135	158	180		
16.0	24	48	72	96	120	144	168	192		

Braço de dialatação

A dilatação linear dos tubos, causada pela diferença térmica entre a temperatura de trabalho e a temperatura da montagem, pode ser compensada por meio de diferentes tipos de instalação.

Na maioria dos casos, as mudanças de direção no traçado da conduta podem ser usadas para absorver a expansão linear. O braço de dilatação, L_s, pode ser feito no Tê ou no Joelho.

Se não for possível compensar a dilatação linear variando a direção, será necessário instalar uma lira de dilatação em U. Neste caso além do comprimento do braço de dilatação, L_S , também se deve ter em consideração a largura L_2 da lira de dilatação.

Braço de dilatação com um Tê ou com um Joelho

Lira de dilatação em U, con 4 joelhos

O comprimento do braço de dilatação, L_S , e a largura, L_1 , na lira de dilatação em U, calculam-se com as seguintes fórmulas:

Braço de dilatação

 $L_S = C * \sqrt{\emptyset_{ext} * \triangle L}$

En que

FP Apoio fixo (abraçadeiras fixas).

PS Apoio deslizante (abraçadeiras guia).

L Comprimento do tubo em m.

△L Dilatação térmica em mm.

 $\mathcal{O}_{\mathrm{ext}}$ Diâmetro exterior do tubo em mm.

Lira de dilatação em U

 $L_1 = 2 * \Delta L + L_2$

Em que

L_S Comprimento do braço de dilatação em mm.

 L_1 Largura da lira em U, em mm (com um valor mínimo de 210 mm).

Largura mínima de segurança na lira em U, 150 mm.

C Constante relativa ao material do tubo, para PP-R o valor é 20.

Isolamento térmico em tubos de água quente e fria.

O "Reglamento de Instalaciones Térmicas en los Edificios – RITE", aprovado pelo Real Decreto RD 1027/2007 e suas posteriores modificações (RD 238/2013), establece que os tubos e acessórios das instalações térmicas devem dispor de um isolamento térmico para reduzir as perdas de calor. Os tubos devem ser isolados quando a temperatura da água seja superior a 40 °C e estejam instaladas em locais não isolados. Quando os tubos são instalados no exterior dos edifícios, devem ter proteção suficiente contra a intempérie de forma a garantir que não ocorrem infiltrações da água da chuva para o interior do isolamento. São definidos dois procedimentos para a escolha da espessura mínima do isolamento dos tubos:

- O método simplificado, utiliza valores de espessura tabelados.
- O método alternativo, em que se tem de calcular para garantir que as perdas térmicas nas condutas não superam 4% da potência máxima transportada.

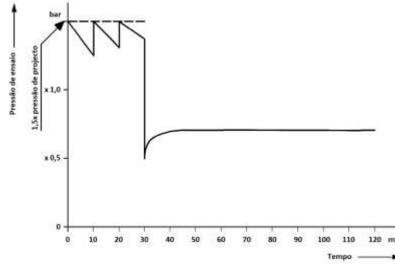
Na maioria das instalações, sobre tudo nas de potência inferior a 70 kW, o método a aplicar será o simplificado. O método simplificado estabelece a espessura mínima do isolamento térmico, em mm, para um material de isolamento de referência com uma condutividade térmica λ_{ref} = 0,04 W/m.°K, a 10 °C:

Espessura mínima do isolamento térmico, em mm								
Águas	quentes no interior d	os edifícios		Águas quentes no exterior dos edifícios				
Diâmetro	Temperatura máxima da água (°C)			Diâmetro	Temperatura má	Temperatura máxima de fluido (°C)		
exterior (mm)	40 a 60	61 a 100		exterior (mm)	40 a 60	61 a 100		
20	25	25		20	35	35		
25	25	25		25	35	35		
32	25	25		32	35	35		
40	30	30		40	40	40		
50	30	30		50	40	40		
63	30	30		63	40	40		

Espessura mínima do isolamento térmico, em mm									
Água	as Frias no interio	or dos edifíci	os		Águas frias fora dos Edificios				
Diâmetro	Temperatu	ıra mínima d	a água (°C)		Diâmetro	Tempera	itura mínima da	água (°C)	
exterior (mm)	-10 a 0 ¹⁾	1 a 10	11 a 30		exterior (mm)	-10 a 0 ¹⁾	1 a 10	11 a 30	
20	30	25	20		20	50	45	40	
25	30	25	20		25	50	45	40	
32	30	25	20		32	50	45	40	
40	40	30	20		40	60	50	40	
50	40	30	20		50	60	50	40	
63	40	30	30		63	60	50	50	

¹⁾ Água com anticongelante usada em circuitos fechados de arrefecimento.

Recomenda-se o dimensionamento da espessura de parede do isolamento de acordo com o "RITE", e tendo em consideração as variações de espessura que devem ser usadas em cada caso, tal como se indica no método simplificado do "RITE".

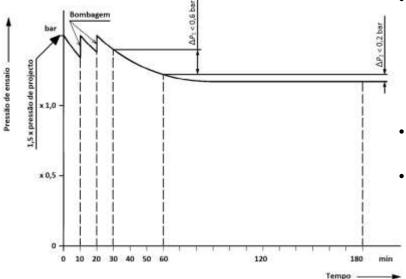

No "RITE", é indicado o método alternativo para o cálculo do isolamento em redes de tubagem, de acordo com o qual é possível diminuir a espessura deste isolamento, em comparação com as espessuras propostas no método simplificado, atendendo ao isolamento térmico dos materiais termoplásticos. Esta possível redução da espessura do isolamento é conseguida pela baixa condutividade térmica dos tubos FERSIL PP-R100, com apenas λ_{PP-R100}= 0,15 W/(m.°K).

Ensaios em obra

Estes ensaios não servem para validar a resistência dos componentes montados no sistema, mas servem apenas para validar a estanquidade da montagem para as condições de funcionamento do sistema. Devem ser seguidas e respeitadas as práticas recomendas pelo fabricante e pela empresa gestora de água, na ausência de informação, deve ser seguido o CEN/TR 12108.

Método A, do CEN/TR 12108

- Abrir sistema de ventilação e purgar com água toda a instalação para expelir o ar existente.
- Interromper o fluxo e fechar o sistema de ventilação;
- Aplicar a pressão de ensaio hidrostático, igual a 1,5 vezes a pressão de projecto (ou a pressão de serviço da rede que no máximo são 10 bar), repondo a pressão a cada 10 minutos, conforme a Figura. Nesta fase realizar uma inspeção visual para identificar quaisquer fugas óbvias, reparar e repetir o procedimento;



- Aos 30 minutos reduzir rapidamente a pressão por sangramento da água na alimentação, para 0,5x a pressão de projecto (ou a pressão de serviço da rede) de acordo com a Figura;
- Fechar a válvula e monitorizar a situação durante 90 min, verificando visualmente se ocorrem fugas;
 - Nesta fase é expectável que ocorra uma a recuperação da pressão para valores constantes superiores a 0,5 vezes a pressão de projecto (ou a de serviço da rede). Se durante esse período não ocorrer uma quebra de pressão, o sistema de tubagem está bem montado e é considerado válido.

Nota: Uma perda ligeira na pressão pode ser causada pela dilatação dos tubos e não deve ser considerado como falha.

Método B do CEN/TR 12108

- Abrir sistema de ventilação e purgar com água toda a instalação para expelir o ar existente.
- Interromper o fluxo e fechar o sistema de ventilação;

- Aplicar a pressão de ensaio hidrostático, igual a 1,5 vezes a pressão de projecto (ou a pressão de serviço da rede que no máximo são 10 bar), repondo a pressão a cada 10 minutos, conforme a Figura. Nesta fase realizar uma inspeção visual para identificar quaisquer fugas, reparar e repetir o procedimento;
- Leia e registe a pressão quando tiver decorrido os primeiros 30 min;
- Leia a pressão após os 30 minutos seguintes e verifique se há fugas visíveis. Se a pressão tiver caído menos de 0,6 bar, registar os valores e pode concluir que o sistema não tem fugas óbvias, devendo dar continuidade ao ensaio sem adicionar mais água;
- Verificar novamente se há fugas visíveis e se durante as 2 h seguintes, a pressão tiver caído menos de 0,2 bar, o sistema de tubagem está bem montado e é considerado válido;
- Para seções mais curtas de uma instalação, o ensaio de obra pelo método B pode ser reduzido a apenas às fases hasta aos 60 minutos.

Embalagem

Os tubos FERSIL PP-R100 são embalados em molhos de varas com 4m, envolvidas em manga plástica de cor verde para a série S3,2 e de cor branca para a série S2,5. Os atados são paletizados para armazenamento e para transporte por camião.

Embalagem em paletes dos tubos FERSIL PP-R100 EN ISO 15874								
ϕ_{ext}	Qt. /atado	Qt./atado	Qt./palete	Qt./palete				
(mm)	(tubos)	(m)	(atados)	(m)				
20	20	80	50	4.000				
25	25	100	28	2.800				
32	10	40	45	1.800				
40	5	20	54	1.080				
50	3	12	44	528				
63	3	12	33	396				

Os accesorios PP-R100 são embalados em sacos e caixas de cartão, para maior detalhe consultar a tabela de preços.

Outras opções de embalagem sob consulta.

Apartado 2022 3701-906 Cesar Portugal

Tel.: +351 256 856 010 | Fax: +351 256 856 011 fersil@fersil.com | www.fersil.com